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Summary

 

The maize 

 

p1

 

 gene encodes an R2R3-MYB transcription factor that controls the biosynthesis 

of red flavonoid pigments in floral tissues of the maize plant. Genetic and quantitative trait 

locus analyses have also associated the 

 

p1

 

 gene with the synthesis of maysin, a flavone 

glycoside from maize silks that confers natural resistance to corn earworm. Here, we show 

directly that the 

 

p1

 

 gene induces maysin accumulation in silk tissues. Transformation of 

maize plants that had low or no silk maysin with 

 

p1

 

 transgenes elevated silk maysin 

concentrations to levels sufficient for corn earworm abiosis. The 

 

p1

 

 transgenes also 

conferred red pigment to pericarp, cob, husk and tassel tissues, as expected; however, 

different subsets of these tissues were pigmented within individual transgenic plants. 

Statistical analysis shows that the pigmentation patterns observed amongst the 

 

p1

 

 

transgenic plants conform to a hierarchy that is similar to the temporal ordering of floral 

organ initiation. We propose that the observed hierarchy of pigmentation patterns is 

conferred by variation due to epigenetic control of the 

 

p1

 

 transgenes. The production of 

plants with improved traits through genetic engineering can depend in large part on the 

achievement of tight organ-specific expression of the introduced transgenes. Our results 

demonstrate that the production of transgenic plants using a promoter with well-defined 

tissue specificity, such as the 

 

p1

 

 promoter, can result in unexpected variation in tissue 

specificity amongst the resulting transgenic plants.
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Introduction

 

Corn, 

 

Zea mays

 

 L., is the most important cereal crop in the

USA, and a major crop in world agriculture. For 2003, total

global corn production was reported to be 593 952 thou-

sand metric tons (http://www.corn.org/web/wcornprd.htm).

Damage by insect pests can greatly decrease crop yield and

grain quality. One of the major insect pests of corn is the corn

earworm, 

 

Helicoverpa zea

 

 (Boddie). Corn earworm larvae ini-

tially feed on the exposed silks, but older larvae may burrow

through the silk mass to the ear, where they consume the

developing kernels. This damage predisposes the ear to

fungal infestations, which can lead to serious food safety

risks (Ortega 

 

et al

 

., 1980). For example, aflatoxin, a mycotoxin

produced by the fungus 

 

Aspergillus flavus

 

, is carcinogenic to

humans and animals (Dowd and White, 1995). To control

corn earworms, growers may make 30 or more applications

of insecticide per season (Cooke, 1997). As a result of the

economic costs and environmental impact of widespread

applications of synthetic pesticides, there has been consider-

able interest in the identification of maize germplasm

with natural resistance to corn earworm. One type of natural

resistance has been associated with the presence of maysin,

a C-glycosyl flavone, in the silks (Waiss 

 

et al

 

., 1979; Elliger
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et al

 

., 1980; Snook 

 

et al

 

., 1994) (Figure 1). Maysin is antibi-

otic to 

 

H. zea

 

 larvae and is thought to interfere with amino

acid metabolism in the insect gut (Byrne 

 

et al

 

., 1997).

Corn earworm resistance is positively correlated with a

silk browning phenotype (Byrne 

 

et al

 

., 1989, 1996a), in which

the silks turn brown within minutes after wounding or cut-

ting. This browning reaction is under monogenic control and

is caused by the oxidation of phenolic compounds (Levings

and Stuber, 1971). Previous genetic studies have indicated

that the silk browning phenotype is related to the constitu-

tion of the 

 

p1

 

 locus (Coe 

 

et al

 

., 1988). The 

 

p1

 

 gene encodes an

R2R3-MYB domain transcription factor that regulates a branch

of the flavonoid biosynthesis pathway (Figure 1), leading to

red phlobaphene pigments in the cob and pericarp (Grotewold

 

et al

 

., 1991, 1994). Styles and Ceska (1989) showed that a

functional 

 

p1

 

 allele specifies both red pigmentation and the

production of C-glycosyl flavones, although the presence of

maysin was not specifically determined. Further evidence that

 

p1

 

 regulates maysin synthesis was obtained in a quantitative

trait locus (QTL) analysis performed by Byrne 

 

et al

 

. (1996b),

which found that the 

 

p1

 

 locus coincides with a major QTL

responsible for 58% of the phenotypic variance in maysin levels.

In addition, experiments by Grotewold 

 

et al

 

. (1998) showed

that maize BMS (Black Mexican Sweet) callus cells transformed

with a 

 

p1

 

-expressing transgene accumulated C-glycosyl fla-

vones related to maysin and 3-deoxy flavonoid precursors of

phlobaphenes. More recently, expression of the maize 

 

p1

 

 gene

and a tightly linked paralogous gene, termed 

 

p2

 

 (Zhang 

 

et al

 

.,

2000), in maize cell cultures induced the synthesis of phenyl-

propanoids and C-glycosyl flavones related to maysin (Zhang

 

et al

 

., 2003). However, neither study detected the production

of maysin, leading the authors to suggest that the maize cell

culture system used was not competent to express the functions

required for glycosyl modifications of the flavonoid skeleton.

Here, we provide direct evidence that the 

 

p1

 

 gene induces

maysin production through analysis of transgenic maize plants.

Maysin concentrations were elevated in maize plants trans-

formed with 

 

p1

 

 transgenes relative to plants without a trans-

gene. These results demonstrate the effectiveness of using a

transcription factor to control an entire pathway for biosynthesis

of an advantageous natural compound in transgenic plants.

 

Results

 

Transformation with a 

 

p1

 

 transgene induces maysin 

accumulation in maize silks

 

To directly determine whether 

 

p1

 

 regulates the production of

maysin and maysin analogues in silks, the flavonoid contents

of silks from a plant carrying a 

 

p1

 

 transgene were determined

by reverse-phase high-performance liquid chromatography

(HPLC) (Snook 

 

et al

 

., 1989; Table 1). The transformation event

analysed carried a transgene containing the promoter and

Figure 1 Proposed biosynthesis pathway for maysin and phlobaphenes. 
Modified from Lee et al. (1998) and Zhang et al. (2003).

Table 1 Percentage of flavones in silks from a pWRWR transgenic plant*
 

Plant genotype Chlorogenic acid Iso-orientin/rhamnosyl Maysin Apimaysin Methoxy-maysin

pWRWR† 0.088 0.006 0.637 0.008 0.009

HiII‡ 0.063 0.000 0.000 0.000 0.000

*Values given in percentage fresh weight.

†Hemizygous T1 plants that had been transformed and crossed with the HiII line.

‡Non-transformed HiII plant.
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complementary DNA (cDNA) of the 

 

P1-wr

 

 allele. This transgene,

designated pWRWR, conferred uniform dark red pigmenta-

tion in pericarp and cob, as well as uniform red pigmentation

to dried husks, tassel glumes and silks (Cocciolone 

 

et al

 

.,

2000). The levels of maysin, apimaysin and methoxymaysin

in silk from the transgene recipient line, HiII, were below the

limits of detection. The presence of the pWRWR transgene

induced detectable levels of the three compounds; however,

the maysin concentration was greatly elevated (0.637% fresh

weight) relative to apimaysin and methoxymaysin (0.008%

and 0.009% fresh weight, respectively). Hence, the 

 

p1

 

 gene

specifically controls maysin production in silk.

 

Maysin concentrations are associated with pericarp 

pigmentation in 

 

p1

 

 transgenic plants

 

Previously, we described the production and molecular char-

acterization of plants transformed with various promoter/

cDNA combinations of two different 

 

p1

 

 alleles: 

 

P1-rr

 

 and

 

P1-wr

 

 (Cocciolone 

 

et al

 

., 2001). The transgene constructs,

pRRARR, pRRAWR, pWRARR and pWRAWR (Figure 2), are

collectively referred to as P::P transgenes. Here, we present a

detailed analysis of the transgene-conferred pigmentation

patterns, and the relationship of pigmentation intensity and

distribution to the concentration of maysin in silk.

The P::P transgenes conferred three spatial patterns of

pericarp pigmentation: uniform, present throughout the

pericarp (Figure 3B); white cap, predominantly in the gown

or lower half of the kernel (Figure 3C); and silk scar, only at

the silk attachment region (Figure 3D). These patterns occurred

independently or in combination (Figure 3E). Pericarp colour

also varied amongst individual transgenic plants, ranging

from light orange to very dark red (Figure 3, top). Because

maize silk tissues are derived by outgrowth of the two ante-

rior carpels that give rise to the pericarp covering the germi-

nal face of the kernel (Kiesselbach, 1949), we asked whether

the pericarp pigmentation phenotype and silk maysin levels

were correlated. To address this question, silk maysin levels,

pericarp colour intensity and pigmentation pattern were

scored for a subset of 41 T

 

1

 

 plants from 16 independent

transgenic lines generated with the four P::P constructs. Peri-

carp colour intensity was ranked on a scale devised by Brink

and Styles (1966) and recreated here (Figure 3, top). The

scale ranges from 1 to 11, with a score of 1 corresponding to

the absence of pigment and a score of 11 corresponding to the

darkest red colour. On this scale, the pericarp pigmentation

of the P::P transgenic plants ranged in score from 3 to 11.

Silk maysin concentrations for the 41 T

 

1

 

 plants are repre-

sented graphically as a percentage of the fresh silk weight in

Figure 4. The value above each bar represents the pericarp

colour score for a given plant, and the pigmentation patterns

are listed below the graph. In all cases, the T

 

0

 

 plants had been

crossed with pollen from the inbred line 4Co63, which carries

a 

 

p1-wwb

 

 allele that confers white pericarp, white cob and

Figure 2 Diagram of the P::P transgene constructs. The promoter and complementary DNA (cDNA) regions of the P::P constructs are indicated by 
black boxes for P1-rr sequences and white boxes for P1-wr sequences. A comparison of the upstream regulatory regions of P1-rr and P1-wr is shown 
schematically for the first two constructs. The P1-rr upstream regulatory sequence contains two functionally defined enhancer regions: a 1.0 kb proximal 
enhancer (−235 to −1252) and a 1.2 kb distal enhancer (−4842 to −6110) (Sidorenko et al., 1999, 2000). The dotted boxes are sequences unique to 
P1-rr, and the box marked ‘w’ is specific to P1-wr. Hatched boxes indicate a homologous sequence in P1-rr and P1-wr that is partially duplicated in P1-
rr. The open box region in P1-wr is 96% homologous to a segment of P1-rr that is located 1.1 kb upstream of the EcoRI site. The broken line delineates 
a region of 99% sequence homology. The bent arrow indicates the location of the transcription start site of P1-rr. The bent lines represent intron 1 of 
the maize adh1 gene. Restriction enzymes are indicated as E (EcoRI), S (Sal I), H (HindIII) and B (Bgl II).
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Figure 3 Maize kernel and plant phenotypes. Top: pericarp colour intensity scale showing the spectrum of pericarp pigmentation amongst natural p1 
alleles. Bottom: phenotypes of kernels produced on P::P transgenic plants. (A) Kernel phenotype of untransformed plant. (B–E) Pericarp pigmentation 
patterns conferred by P::P transgenes: (B) uniform red pericarp; (C) gown pigmentation; (D) silk scar pigmentation; (E) combination of silk scar and gown 
pigmentation. (F, G) Cob phenotypes: untransformed plant (F) and plant transformed with P::P transgene (G). (H–J) Phenotype of untransformed (left) 
vs. transformed (right) for husk (H), silks (I) and tassel (J).

  
Figure 4 Comparison of pericarp pigmentation intensity and organ pattern with the concentration of silk maysin for P::P transgenic plants (T1 
generation). Each graph depicts data from one transforming plasmid, listed above the graph. Silk maysin concentration as a percentage of fresh weight 
is graphed for individual plants, which are grouped by numbered transformation events listed below the graph. Estimated mean maysin values for each 
construct are in the upper left corner of each graph. Broken lines indicate the range of maysin values obtained for control plants without transgenes. 
Numbers above the bars are the pericarp colour scores determined using the scale from Figure 3; an asterisk indicates that only the silk scar was coloured. 
Pigmentation patterns for each transformation event are given below the graphs: WC (white cap); U (uniform; including silk scar colour); U − S (uniform; 
excluding silk scar colour); S (silk scar only); W (white).
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browning silks. Maysin concentrations were determined for

three plants from the T1 population that lacked the transgene

due to segregation in order to determine the background silk

maysin levels; these values ranged from 0.125% to 0.187%

fresh weight.

Plants with darker pericarp colour (scores = 7) tended to

have higher maysin values, whereas plants with lighter peri-

carp colour tended to have lower maysin values. The pericarp

colour score was statistically significant (t-statistic = 4.51,

d.f. ≈ 21.9, P value = 0.0002) when added to the model in

Equation (1) (‘Experimental procedures’). This indicates a sig-

nificant positive correlation between maysin concentration

and pericarp colour score when plasmid and event effects are

accounted for. However, this correlation was not absolute. For

example, one plant transformed with pRRAWR had a pericarp

colour score of 7, but had < 0.2% silk maysin, whereas

one plant transformed with pWRAWR had no pericarp colour

(score = 1), but > 0.4% silk maysin. Plants with the following

pigmentation patterns tended to consistently have high may-

sin values (ranging from 0.372% to 0.747% fresh weight):

silk scar (S), uniform (U) and white cap with silk scar (WC + S).

The one exception to this was a plant that had uniform pig-

mentation but no silk scar pigmentation (U − S). Plants with

the white cap-only pattern had either high or low maysin values.

Transgenes confer hierarchical pigmentation amongst 

organs

The endogenous P1-rr allele confers pigmentation not only to

the kernel pericarp and cob, but also to the husks, silks and

tassel glumes of the mature dried plant. To determine which

of these organs are pigmented by the P::P transgenes, these

tissues, with the exception of silk, were scored for the pres-

ence of detectable pigmentation. The silk tissue could not be

scored for transgene-conferred coloration because the T1

population carried a p1-wwb allele, which promotes silk

browning. Of the 75 T1 plants that had a detectable pheno-

type, only 26 plants (35%) exhibited pigmentation in all

four organs scored – pericarp, cob, husk and tassel glumes

(Figure 3F–J). The remaining 49 plants (65%) had pigmen-

tation in specific subsets of these organs, and in some cases

the pigmentation patterns even differed amongst sibling

plants. Such variability in transgene phenotype amongst floral

organs has been reported previously for plants transformed

with a P1-rr promoter driving a GUS reporter gene (P::GUS;

Cocciolone et al., 2000). The spatial patterns conferred by

the P::GUS transgene were classified into five groups that

fitted into a hierarchical ordering, in which each successive

group had GUS activity in one more organ than the previous

group – starting with pericarp only, followed by the sequential

addition of GUS activity in cob, husk, silk and tassel glumes.

The pigmentation patterns of the P::P transgenes were

compared with the hierarchical GUS activity patterns of the

P::GUS transgenes. All of the P::P transgenes, irrespective of

the allelic origin of the promoter and cDNA, produced pat-

terns consistent with the hierarchy observed for the P::GUS

transgenes. Of 75 plants from 23 independent transformation

events, 69 plants from 20 events had transgene-conferred

pigmentation patterns consistent with the hierarchy (92%),

and only six plants from four events had patterns inconsistent

with the hierarchy (Table 2). The presence of hierarchical

pigmentation patterns was not correlated with specific dif-

ferences in transgene copy number, as determined by DNA

gel blot analysis (data not shown).

Transgene-conferred hierarchy unlikely to be due to 

chance

A statistical test was developed to determine whether the

apparent hierarchical ordering of the P::P transgene data

could be explained by chance. The null hypothesis of our test

was that pigmentation in the tassel, husk, cob and pericarp

Table 2 Analysis of the pigmentation patterns of the P::P transgenic plants*
 

Plasmid

Hierarchical patterns Non-hierarchical patterns

Total deviant Total†P PC PCH PCHT Total† in hierarchy CH PCT PT

pRRARR 4 (2) 0 5 (1) 4 (1) 13 (4) 0 0 0 0 13 (4)

pRRAWR 1 (1) 11 (2) 0 8 (2) 20 (5) 0 2 (2) 3 (1) 5 (3) 25 (8)

pWRARR 9 (4) 2 (1) 6 (3) 3 (2) 20 (7) 0 0 0 0 20 (7)

pWRAWR 3 (1) 0 2 (1) 11 (3) 16 (4) 1 (1) 0 0 1 (1) 17 (4)

Total 17 (8) 13 (3) 13 (5) 26 (8) 69 (20) 1 (1) 2 (2) 3 (1) 6 (4) 75 (23)

Data are presented as the number of plants with a given pigmentation pattern, followed in parentheses by the number of independent events represented.

*T1 generation.

†Some events contain plants with different patterns, and so the total number of events is less than the sum across the pigmentation patterns.
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was mutually independent. An alternative hypothesis was

that the patterns conformed to the proposed hierarchy of

PCHST (pericarp, cob glume, husk, silk and tassel; Cocciolone

et al., 2000). For example, let us consider two groups of

plants: those with pigmentation in the tassel and those with-

out tassel pigmentation. Under the null hypothesis, plants

from both groups are equally likely to have pigmentation in

the husk. Under the alternative hypothesis, plants in the first

group are more likely to have pigmentation in the husk than

plants in the second group. We used the phenotypic data of

the 75 transgenic plants from 23 independent lines that were

scored for the presence or absence of pigmentation in the

pericarp, cob, husk and tassel. To test our hypotheses, we

conditioned on the observed number of plants having pig-

mentation in each tissue: 74 with red pericarp, 55 with red

cob, 40 with red husk and 31 with red tassel. To determine

the chance that 69 of 75 plants would follow the proposed

expression hierarchy under the null hypothesis of independ-

ence, we carried out the following procedure 10 000 times to

obtain an approximate answer.

1 Seventy-four of the 75 plants were randomly chosen to

exhibit transgene-conferred pigment in the pericarp.

2 Fifty-five of the 75 plants were randomly (and independ-

ently of step 1) chosen to exhibit transgene-conferred pigment

in the cob.

3 Forty of the 75 plants were randomly (and independently

of steps 1 and 2) chosen to exhibit transgene-conferred

pigment in the husk.

4 Thirty-one of the 75 plants were randomly (and independ-

ently of steps 1, 2 and 3) chosen to exhibit transgene-

conferred pigment in the tassel.

5 The number of randomly generated plants that exhibited

phenotypic patterns consistent with the proposed hierarchy

was counted.

In 10 000 trials, the observed number of plants following

the hierarchy was never as large as 69, the value of the actual

data. The maximum number of plants following the hierarchy

in the 10 000 trials was 65. The distribution of the 10 000

values had a normal shape, a mean of 49.3 and a standard

deviation of 2.9. The test clearly indicates that the observed

number of plants having phenotypic patterns that agree with

the hierarchy would be highly unusual under the independ-

ence model. Thus, we conclude that the underlying model for

the current data has significantly greater tendency to pro-

duce observations consistent with the hierarchy than does

the independence model.

The analysis above ignores the relationship of plants from

the same transgenic event. As the spatial patterns of plants

originating from the same transformation event tended

to be more similar than patterns for plants from different

events, perceived evidence in favour of the hierarchy could be

inflated by repeated observations of a pattern satisfying the

hierarchy within a particular event. To address this possibility,

we conducted the analysis using event-level data, in which all

of the patterns observed within a single transformation event

were represented by the predominant pattern. For 19 of the

23 events, all plants within an event exhibited identical phe-

notypic patterns. For the other four events, three events had

plants with exactly two distinct patterns, both of which

agreed with the hierarchy. In these cases, the most common

pattern was selected to represent the event. The remaining

event contained a single plant out of four plants that had a

pattern that was inconsistent with the hierarchy. That pattern

was selected to represent the event so that our analysis

would be conservative. Of the 23 patterns associated with

the 23 events, 19 satisfied the expected hierarchy. To judge

the statistical significance of this number, we conducted

10 000 random trials as described above using the 23 event

patterns as the basic units for analysis. In 13 of the 10 000 tri-

als, the observed number of events following the hierarchy

was as large as 19, whilst the maximum number of events fol-

lowing the hierarchy was 20. The distribution of the 10 000

values had a normal shape, a mean of 13.5 and a standard

deviation of 1.7. The test clearly indicates that the observed

number of events whose phenotypic pattern agrees with the

hierarchy using event-level data would be highly unusual

under the independence model (P value ≈ 0.00013), further

supporting our previous conclusion.

Presence of silk maysin also fits hierarchy

If silk maysin production corresponds to the ‘silk’ position in

the hierarchy (PCHST), which lies between husk and tassel,

then plants with pigmentation in the pericarp, cob, husk and

tassel (PCHT) should have high silk maysin levels, and plants

with pigmentation limited to pericarp and cob tissues (P and

PC) should have background maysin values. Plants with pig-

mentation in the pericarp, cob and husk, but not the tassel

(PCH), may or may not express the transgene in silk, and so

could have either high or low silk maysin.

To determine whether the maysin data of the 41 T1 plants

described above fit with this idea, the data were re-analysed.

A dot plot of the maysin values for plants in each of the cat-

egories P, PC, PCH and PCHT shows that all of the plants that

exhibited pigmentation in the pericarp, cob, husk and tassel

(PCHT) also had high silk maysin concentrations, ranging

from 0.372% to 0.747% fresh weight (Figure 5). Plants with

pigmentation in the pericarp only, or in the pericarp and cob
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(P or PC), tended to have low maysin concentrations, with all

but one value below 0.290% fresh weight. In the latter group,

the endogenous p1-wwb allele from the 4Co63 genotype

probably confers the observed maysin production (as described

previously). As the T1 plants are not in an isogenic background,

some variation in maysin levels is expected due to segregation

of other loci affecting maysin synthesis (Snook et al., 1993);

however, there is almost no overlap in maysin concentrations

between the low maysin (P, PC) vs. high maysin (PCHT) classes.

To determine the statistical significance of these observa-

tions, we added a ‘pigmentation pattern’ factor with four

categories (P, PC, PCH and PCHT) to the mixed linear model

described in Equation (1) (‘Experimental procedures’). Esti-

mated means were calculated for each of the pigmentation

pattern categories (Figure 4). Contrasts amongst the means

revealed the following facts. There was no significant differ-

ence between the means for patterns P and PC (t = 0.59,

d.f. ≈ 6.1, P value = 0.5734) and the means for patterns PCH

and PCHT (t = 0.72, d.f. ≈ 5.1, P value = 0.5027). The mean

for pattern PCH was significantly greater than the means for

patterns P and PC (t = 3.39, d.f. ≈ 5.8, P value = 0.0157).

Likewise, the mean for pattern PCHT was significantly greater

than the means for patterns P and PC (t = 4.68, d.f. ≈ 4.5, P

value = 0.0072). All of these results are consistent with the

idea that silk maysin synthesis conforms to the proposed

organ-specific hierarchy of expression of the P::P transgenes.

Discussion

The maize p1 gene encodes an R2R3-MYB homologous

transcriptional activator of genes required for flavonoid

biosynthesis. Mutations in p1 result in a loss of phlobaphene,

a flavonoid-derived pigment commonly found in maize floral

organs, whilst mutations in p1 and a tightly linked paralo-

gous gene (p2) result in complete loss of maysin and related

C-glycosyl flavones (Zhang et al., 2003). Previous studies have

shown that a major QTL determining the levels of silk maysin

coincides with the maize p1 locus (Byrne et al., 1996a,b, 1997,

1998; Guo et al., 2001). Moreover, three independent stud-

ies have shown that expression of the p1 gene in maize cell

cultures activates a subset of genes required for flavonoid

biosynthesis and results in the production of significant levels

of flavones (Grotewold et al., 1998; Bruce et al., 2000;

Zhang et al., 2003). It was surprising, therefore, that in none

of the three previous studies did p1 expression induce the for-

mation of phlobaphene pigments or maysin in maize cell cul-

tures. The lack of production of maysin was suggested to be

due to an absence of cell-type specific factors required for gly-

cosylation of the flavonoid skeleton (Grotewold et al., 1998).

We show here that plants carrying p1 transgenes induce the

production of phlobaphene pigments in kernel pericarp and

cob, and the accumulation of maysin in silks. These results

provide a direct confirmation of the role of the p1 gene in

maysin production.

It is intriguing why maysin is not produced at detectable

levels in the p1-transformed maize cell cultures. Possibly,

maize cultured cells may not be physiologically or develop-

mentally competent to express the flavonoid glycosylating

activities. Alternatively, if maysin and/or its related glyco-

sylated flavones are cytotoxic, then only those transformed

cells that fail to induce these activities will survive for analysis.

In either case, our findings indicate that cell culture systems

are, to some extent, limited in their capacity to produce

certain secondary metabolites.

Silk maysin levels greater than 0.2% fresh weight are

sufficient for corn earworm antibiosis and reduction of corn

earworm larval weights to < 50%, whilst levels greater than

0.4% fresh weight reduce larval weights to < 70% of con-

trols (Wiseman et al., 1992). Transformation of maize with

p1 transgenes resulted in the elevation of silk maysin levels,

relative to the no transgene controls, with values ranging

from 0.372% to 0.747% fresh weight. Thus, the silk maysin

concentration of the p1 transgenes would be expected to

confer resistance to corn earworm. However, a possible problem

with using p1 transgenes for corn earworm management is

the associated pigmentation trait. Use of a silk-specific pro-

moter would limit the production of maysin and associated

pigments to the maize silk, and thus result in a product that

may be useful in the sweet corn industry. Although high-

maysin corn lines have recently been made available for

Figure 5 Dot plot of maysin concentration grouped by hierarchical 
pattern. Each point represents a single plant. Numerical values are the 
estimated mean maysin level for each pattern category. Tissues are given 
as P (pericarp), C (cob), H (husk) and T (tassel).
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commercial germplasm improvement (Widstrom and Snook,

2001), a potential advantage of a transgenic approach is that

the high-maysin trait conferred by the p1 transgene may be

introduced directly into elite lines pending improvements in

transformation technologies. It is also crucial that any antibi-

otic trait in the silks be combined with husk and ear traits that

help confer resistance; loose husks allow corn earworms to

circumvent the silks and feed directly on the ear (Rector et al.,

2002).

Transformation with constructs containing the upstream

regulatory region of either P1-rr or P1-wr resulted in a hier-

archy of transgene-conferred expression patterns amongst

five floral organs – pericarp, cob, husk, silk and tassel –

irrespective of whether the p1 coding sequence (this study) or

the GUS reporter gene (Cocciolone et al., 2000) was used.

The hierarchical ordering is nearly the reverse of the timing of

floral organ initiation, suggesting that there is an underlying

developmental mechanism controlling p1 promoter expres-

sion in transgenic plants (Cocciolone et al., 2000). Such

developmental programming occurred independently of the

genomic position of the transgene, because the majority of

independent P::P transgenic lines (20 of 23) produced plants

(69 of 75) with pigmentation patterns that fitted the hierar-

chical ordering. However, transgene structure and/or the

genomic context probably influenced which pattern in the

hierarchy was expressed, because plants derived from the same

transformation event tended to have similar pigmentation

patterns. Variation in the patterns amongst plants from the

same transgenic event was observed, but it occurred more

frequently for the P::GUS transgenes (Cocciolone et al., 2000).

The lack of observed variegation within organs indicates

that the transgene expression state for a particular organ

is determined prior to organ formation. Hence, although the

developmental programme can be shifted amongst pat-

terns within the hierarchy, the pattern is set very early in

development so that all cells follow the predetermined plan.

The presence of hierarchical patterning with the use of dif-

ferent coding sequences, as in the case of P::P and P::GUS

transgenes, suggests that the P1-RR and P1-WR promoters

are susceptible to similar epigenetic regulation when placed

in an artificial transgenic environment. The tissue-specific

regulation of the natural p1 alleles, P1-wr (Chopra et al.,

1998; Cocciolone et al., 2001) and P1-pr (Das and Messing,

1994; Lund et al., 1995), has been attributed to epigenetic

regulation; however, they do not conform to the hierarchical

pattern reported here.

Maysin production fitted the ‘silk’ position of the hierarchy,

in which plants with pericarp (P) and pericarp and cob (PC)

patterns generally had low maysin levels, plants with a

pericarp, cob and husk (PCH) pattern had either low or high

maysin levels, and plants with a pericarp, cob, husk and tassel

(PCHT) pattern all had high maysin levels. There was almost

no overlap in maysin concentrations between the low maysin

(P, PC) vs. high maysin (PCHT) classes. The one exception to

this was a plant that had pericarp-only pigmentation but a

high maysin level (0.502% fresh weight). The pericarp pheno-

type of this plant was both white cap and silk scar, with a

pericarp colour score of 5. Such a low colour score was gen-

erally associated with low maysin values; however, the pres-

ence of a silk scar was associated with high maysin values.

Because silk is derived as an outgrowth of the anterior carpels

which also form the pericarp, the presence of pigment at the

point of attachment of silk to kernel (silk scar) could be an

indicator of p1 expression in the silk. A prediction would be

that plants with silk scar pigmentation would have high may-

sin levels irrespective of the pattern of pigmentation in other

tissues. This idea is supported by the observation that four

plants that exhibited pigmentation only in silk scar, and thus

did not conform to the hierarchy, had high maysin values that

ranged from 0.387% to 0.499%. Hence, maysin production

may be regulated by two distinct mechanisms, with one

related to the developmental hierarchy and the other based

on an independent silk-specific regulation associated with

silk scar pigmentation.

Although the first transgenic products largely utilized pro-

moters with constitutive expression patterns, the production

of plants for biotechnological uses should ideally target trans-

gene expression to the desired tissues and developmental

stages. Endogenous plant promoters of developmentally regu-

lated genes would be expected to provide more precise and

controlled expression in specific target tissues. However, our

results show that the promoter of the maize p1 gene, which

has been well characterized both genetically and molecularly

with respect to its tissue-specific expression (Brink and Styles,

1966; Chopra et al., 1996; Sidorenko et al., 2000), produced

complicated patterns of expression in maize floral organs.

The variation in transgene expression patterns amongst p1

transgenic plants fits a predictable hierarchical ordering.

The observation of non-random variation in organ-specific

expression patterns amongst p1 transgenic plants may be

indicative of epigenetic plasticity in the p1 promoter that

could account for the high level of phenotypic diversity

amongst natural p1 alleles (Brink and Styles, 1966). Thus, our

results demonstrate that the promoters of endogenous plant

genes with known tissue specificities may still need to be

screened for stable expression patterns prior to widespread

application. In addition, we presented a statistical method

for determining the significance of transgene expression
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patterns, which may be useful for the analysis of other trans-

gene promoters.

In summary, we have analysed maize plants carrying trans-

genes in which the P1-rr or P1-wr promoter is used to express

the P1-rr or P1-wr cDNA. The results provide direct evidence

that the p1 gene is competent to induce maysin accumula-

tion in silk tissues. Additionally, the hierarchical patterns of

pigmentation observed in transgenic maize plants provide

additional support for a model of p1 regulation in which the

timing of a developmentally programmed activation of p1

expression determines the spectrum of organ pigmentation.

Experimental procedures

Maize materials

The maize p1 gene described in this paper has previously been

designated as P or P1; here, we use the term p1 for the locus,

P1 for dominant alleles and p1 for recessive alleles in accord-

ance with standard maize gene nomenclature (Polacco,

1998). Alleles of the p1 gene are designated by a two-letter

suffix that indicates the presence of phlobaphene pigments

in the pericarp and cob: p1-ww, white pericarp and white

cob; P1-rr, red pericarp and red cob; P1-rw, red pericarp and

white cob; and P1-wr, white pericarp and red cob. Allelic

designations may also include a third letter in the suffix to

indicate the presence or absence of a silk browning phenotype,

represented by b for browning and w for non-browning. In

previous experiments, we designed plasmid constructs in which

the upstream regulatory regions of P1-rr and P1-wr were used

to express the P1-rr and P1-wr cDNAs. The two upstream

regulatory regions and two cDNA regions were combined in

the four possible combinations to generate plasmids desig-

nated pRRARR, pRRAWR, pWRARR, pWRAWR and pWRWR,

where the first two letters (RR or WR) indicate the source of the

upstream regulatory region, and the last two letters indicate

the source of the cDNA. The ‘A’ indicates the presence of the

maize Adh1 intron I in four of the five plasmids (Figure 2;

Cocciolone et al., 2001). The plasmids were transformed into

pre-embryogenic callus derived from immature embryos of

the maize HiII line, as described previously (Cocciolone et al.,

2001). All T0 transgenic plants were crossed with pollen from

the inbred line 4Co63, which carries a p1-ww allele, except for

the pWRWR transgenic plants, which were crossed with pollen

from HiII plants. Tassel glume pigmentation was scored at the

time of anthesis, and pericarp, cob and husk pigmentation was

scored in mature dried ears. Molecular characterization to con-

firm independent transformation events and transgene copy

numbers has been reported previously (Cocciolone et al., 2001).

Maysin analysis

Maize silks were collected 2 days following emergence from

the husks. Silks were immediately frozen in liquid nitrogen,

stored at −80 °C, lyophilized and analysed for maysin and

maysin analogues by reverse-phase HPLC, as described previ-

ously (Snook et al., 1989).

Statistical analyses

Our primary statistical questions involve the assessment of

the significance of the observed associations between silk

maysin concentrations and pigmentation patterns or intensi-

ties. To properly judge these associations, it is necessary to

account for plasmid and event effects in the data. This can be

accomplished by examining the significance of covariates of

interest when they are added to the following mixed linear

model:

Yijk = µ + αi + Bj(i) + εijk (1)

where Yijk denotes the maysin level of the k th plant from the

j th transformation event of the ith plasmid, µ represents

the overall mean maysin level for all plants, αi represents the

effect of the i th plasmid, Bj (i) represents the effect of the j th

event of the i th plasmid (Bj (i) is assumed to be independent

and normally distributed with a mean of zero and an

unknown variance σB
2 ) and εijk represents independent

random errors that account for all sources of variation not

described by the other terms in the model. The use of this

mixed model ensures that our statements regarding statistical

significance account for: (i) the effects of the four plasmids;

(ii) potential correlation amongst the maysin concentrations

of plants from any one event; and (iii) the fact that the events

observed in this particular experiment are only a sample of

the events from a much larger population of potential events.

As a result of the imbalance in the number of events per plasmid

construct and the number of plants per event, Satterthwaite’s

(1946) approximation was used to obtain approximate

degrees of freedom for all mixed linear model t-tests and F-

tests presented in the ‘Results’ section.

For each plasmid construct, estimated means and standard

errors from the fit of the mixed linear model in Equation (1)

are provided at the top of Figure 4. The estimated plasmid

means are approximately the mean of the event means

within each plasmid. These estimates allow us to make

comparisons between plasmids that are undistorted by

the varying numbers of plants per event. Comparison of

the estimated means shows that plants transformed with the
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pWRAWR plasmid have significantly higher mean maysin

levels than plants transformed with the pWRARR plasmid

(estimated difference = 0.301, t = 3.07, d.f. ≈ 13.9, P value

= 0.0083). Other differences observed between the plasmid

constructs were not statistically significant at the 0.05 level.
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